5.1 - Función
creciente y decreciente:
Una función es creciente en un intervalo [a,b] si al tomar dos puntos cualesquiera del mismo, x1 y x2, con la condición x1 £ x2, se verifica que
f( x1 ) < f( x2 ).
Se dice estrictamente creciente si de x1 < x2 se deduce que f(x1) < f(x2).
Una función es decreciente en un intervalo [a,b] si para cualesquiera puntos del intervalo, x1 y x2, que cumplan x1 £ x2, entonces f(x1 ) ³ f(x2 ).
Siempre que de x1 < x2 se deduzca f(x1 ) > f(x2 ), la función se dice estrictamente decreciente.
Una función es creciente en un punto a si existe un intervalo abierto
f(x) £ f(a) si x pertenece a (a - e, a) y
f(x) ³ f(a) si x pertenece a (a, a + e).
https://www.youtube.com/watch?v=rKjPXCGgyOQ
No hay comentarios.:
Publicar un comentario